

Generation IV Technology Roadmap

NERAC Meeting: Washington, D.C. September 30, 2002

Generation IV Technology Roadmap

- Identifies systems deployable by 2030 or earlier
- Specifies six systems that offer significant advances towards:
 - Sustainability
 - Economics
 - Safety and reliability
 - Proliferation resistance and physical protection
- Summarizes R&D activities and priorities for the systems
- Lays the foundation for Generation IV R&D program plans

The Technical Roadmap Report

- Discusses the benefits, goals and challenges, and the importance of the fuel cycle
- Describes evaluation and selection process
- Introduces the six Generation IV systems chosen by the Generation IV International Forum
- Surveys system-specific R&D needs for all six systems
- Collects crosscutting R&D needs
- Recognizes the need for and likelihood of nearer-term deployment, but specifies complete R&D activities
- GIF countries will choose the systems they will work on
- Programs and projects will be founded on the R&D surveyed in the roadmap

Schedule for the Final Steps to Completion

Most Recent Overview for NERAC Apr 15

• GIF Review in Paris May 22

• GIF Review in Rio Jul 9

NERAC Subcommittee Review Jul 31/Aug 1

• DOE Review Aug

Working Group Review Aug 28-29

NERAC Subcommittee Review Sep 13

Transmittal to NERAC
 Sep 23

Organization of Working Groups

Technical Working Groups (horizontal)

Two-year Gen IV Timeline

Key Steps Toward Generation IV Selections

- Definition and evaluation of candidate systems (Feb '01-'02)
- Review of evaluations and discussion of desired missions for the systems (Feb '02)
- Final review of evaluations and performance to missions (Mar and Apr '02)
- Final decision on selections to Generation IV (May and Jul '02)

Generation IV Systems

Gas-Cooled Fast Reactor System **GFR** Lead-Cooled Fast Reactor System I FR Molten Salt Reactor System MSR Sodium-Cooled Fast Reactor System SFR **SCWR** Supercritical-Water-Cooled Reactor System **VHTR**

Each system has R&D challenges ahead – none are certain of success

Very-High-Temperature Reactor System

September 30, 2002 NP03-00 Slide 8 NERAC Meeting

Generation IV System 'Portfolio'

Products

Plant Size

Fuel Cycle

The Portfolio Supports Symbiotic Fuel Cycles

The Roadmap Addresses Viability and Performance R&D Phases

- Viability
 - Key feasibility and proof-of-principle decisions
- Performance
 - Engineering-scale development and optimization to desired levels of performance
- Demonstration
 - Mid- to large-scale system demonstration
- Commercialization

Uncertainties

- Uncertainties in evaluations were captured as simple probability distributions by expert judgment
- Uncertainties in Economics evaluations were very large, and underscore the need for an emphasis on system economics in the R&D
 - Evaluation methodology R&D is needed, especially to address and quantify uncertainties
- R&D costs and schedules are conceptual
- R&D schedules assume steady progress and ample funding
- R&D costs do not include demonstration, infrastructure or contingency for setbacks
 - Programs founded on the roadmap will need additional detail and review

High-Level Generation IV Timelines

Surveys of R&D Needs

- System-specific R&D
- Crosscutting R&D (common to several or all)

Notes on Organization:

- Two major fuel cycle options (advanced aqueous and pyroprocessing) are crosscutting
- Much of the safety R&D is system-specific
- Fuels and materials more crosscutting at the start, becoming more system-specific later
- Any system needs to undertake an appropriate share of the crosscutting R&D

System-Specific R&D Areas

- Fuels and Materials
- Reactor Systems
- Balance-of-Plant
- Safety
- Design and Evaluation
- Fuel Cycle
- R&D Schedule and Costs

Crosscutting Fuel Cycle R&D Needs

Generation IV System		Fu	Recycle			
	Oxide	Metal	Nitride	Carbide	Advanced Aqueous	Pyroprocess
GFR ¹			S	P	P	Р
MSR ²						
SFR ³	P	P			P	P
LFR		S	P		P	P
SCWR	P				P	
VHTR ⁴	P				S	S

P: Primary option S: Secondary option

¹ The GFR proposes (U,Pu)C in ceramic-ceramic (cercer), coated particles or ceramic-metallic (cermet).

² The MSR employs a molten fluoride salt fuel and coolant, and fluoride-based processes for recycle.

³ The SFR has two options: oxide fuel with advanced aqueous, and metal fuel with pyroprocess.

⁴ The VHTR uses a once-through fuel cycle with coated (UCO) fuel kernels, and no need for fuel treatment, as the primary option.

Crosscutting Fuels & Materials R&D Needs

		Fu	el Mat	erials		Structural Materials						
System	Oxide	Metal	Nitride	Carbide	Fluoride (liquid)	Ferritic- martensitic Stainless Steel Allovs	Austenitic Stainless Steel Alloys	Oxide Dispersion Strengthened	Ni-based Alloys	Graphite	Refractory Alloys	Ceramics
GFR			S	P		P	P	P	P		P	P
MSR					P				P	P	S	S
SFR	P	P				Р	P	P				
LFR		S	P			Р	P	S			S	S
SCWR- Thermal	P					P	P	S	S			
SCWR- Fast	P	S				Р	Р	S	S			
VHTR	P					S			P	P	S	P

P: Primary Option

S: Secondary Option

Crosscutting Energy Products R&D Needs

Generation IV System (T _{outlet})		Hydrogen Production		Heat Delivery		Advanced Cycles for Electricity Production			
		I-S Process	Ca-Br Process	Process Heat	Desali- nation	Supercritical CO ₂ Brayton	Supercritical Water Rankine	Helium Brayton	
GFR	(850°C)	P	S	S	О			P	
MSR	(700-850°C)	P	S	S	О			P	
SFR	(550°C)				О	S			
LFR	(550°C)				О	P	S		
	(800°C)		P	S	O	S^1	S^1		
SCWR	(550°C)				О		P		
VHTR	(1000°C)	P		S	О			P	

P: Primary option

S: Secondary option

O: Option for all systems

¹ Bottoming cycle using heat at lower temperatures available after higher temperature heat has been used for hydrogen production.

Issues and Opportunities

- Communications and Stakeholder Feedback
- Infrastructure Development and Use
- Coordinated Licensing Approaches
- Institutional Barriers and Development
- Interactions with Nearer-Term Systems
- R&D Pathways

Summary

- Six systems were selected, based on evaluations to the Generation IV goals and other considerations
- R&D activities were developed and prioritized, with proposed schedules and costs
- Viability phase R&D focuses on key decision points to decide feasibility and proof-of-principle
- Performance phase R&D focuses on priority issues for the systems to attract demonstration and deployment
- The roadmap is a foundation for formulating national and international program plans